Oil sands

What are oil sands?

Oil sands “Tar Sands” Credit: Suncor Energy Inc.

What are oil sands?

Oil sands, Tar sands or, more technically, bituminous sands, are a type of unconventional petroleum deposit.

Oil sands are either loose sands or partially consolidated sandstone containing a naturally occurring mixture of sand, clay, and water, saturated with a dense and extremely viscous form of petroleum technically referred to as bitumen (or colloquially tar due to its similar appearance, odour, and colour). Natural bitumen deposits are reported in many countries, but in particular are found in extremely large quantities in Canada. Other large reserves are located in Kazakhstan and Russia. The estimated worldwide deposits of oil are more than 2 trillion barrels (320 billion cubic metres); the estimates include deposits that have not been discovered. Proven reserves of bitumen contain approximately 100 billion barrels, and total natural bitumen reserves are estimated at 249.67 Gbbl (39.694×109 m3) worldwide, of which 176.8 Gbbl (28.11×109 m3), or 70.8%, are in Alberta, Canada.

Oil sands reserves have only recently been considered to be part of the world’s oil reserves, as higher oil prices and new technology enable profitable extraction and processing. Oil produced from bitumen sands is often referred to as unconventional oil or crude bitumen, to distinguish it from liquid hydrocarbons produced from traditional oil wells.

The crude bitumen contained in the Canadian oil sands is described by the National Energy Board of Canada as “a highly viscous mixture of hydrocarbons heavier than pentanes which, in its natural state, is not usually recoverable at a commercial rate through a well because it is too thick to flow.” Crude bitumen is a thick, sticky form of crude oil, so heavy and viscous (thick) that it will not flow unless heated or diluted with lighter hydrocarbons such as light crude oil or natural-gas condensate. At room temperature, it is much like cold molasses. The World Energy Council (WEC) defines natural bitumen as “oil having a viscosity greater than 10,000 centipoise under reservoir conditions and an API gravity of less than 10° API”. The Orinoco Belt in Venezuela is sometimes described as oil sands, but these deposits are non-bituminous, falling instead into the category of heavy or extra-heavy oil due to their lower viscosity. Natural bitumen and extra-heavy oil differ in the degree by which they have been degraded from the original conventional oils by bacteria. According to the WEC, extra-heavy oil has “a gravity of less than 10° API and a reservoir viscosity of no more than 10,000 centipoise”.

Tar sandstone from the Monterey Formation of Miocene age (10 to 12 million years old), of southern California, USA. Credit: James St. John
Tar sandstone from the Monterey Formation of Miocene age (10 to 12 million years old), of southern California, USA. Credit: James St. John

According to the study ordered by the Government of Alberta and conducted by Jacobs Engineering Group, emissions from oil-sand crude are 12% higher than from conventional oil.

History

The exploitation of bituminous deposits and seeps dates back to Paleolithic times. The earliest known use of bitumen was by Neanderthals, some 40,000 years ago. Bitumen has been found adhering to stone tools used by Neanderthals at sites in Syria. After the arrival of Homo sapiens, humans used bitumen for construction of buildings and waterproofing of reed boats, among other uses. In ancient Egypt, the use of bitumen was important in preparing Egyptian mummies.

In ancient times, bitumen was primarily a Mesopotamian commodity used by the Sumerians and Babylonians, although it was also found in the Levant and Persia. The area along the Tigris and Euphrates rivers was littered with hundreds of pure bitumen seepages. The Mesopotamians used the bitumen for waterproofing boats and buildings. In Europe, they were extensively mined near the French city of Pechelbronn, where the vapour separation process was in use in 1742.

Nomenclature

The name tar sands was applied to bituminous sands in the late 19th and early 20th century. People who saw the bituminous sands during this period were familiar with the large amounts of tar residue produced in urban areas as a by-product of the manufacture of coal gas for urban heating and lighting. The word “tar” to describe these natural bitumen deposits is really a misnomer, since, chemically speaking, tar is a human-made substance produced by the destructive distillation of organic material, usually coal.

Since then, coal gas has almost completely been replaced by natural gas as a fuel, and coal tar as a material for paving roads has been replaced by the petroleum product asphalt. Naturally occurring bitumen is chemically more similar to asphalt than to coal tar, and the term oil sands (or oilsands) is more commonly used by industry in the producing areas than tar sands because synthetic oil is manufactured from the bitumen, and due to the feeling that the terminology of tar sands is less politically acceptable to the public. Oil sands are now an alternative to conventional crude oil.

Early explorers

In Canada, the First Nation peoples had used bitumen from seeps along the Athabasca and Clearwater Rivers to waterproof their birch bark canoes from early prehistoric times. The Canadian oil sands first became known to Europeans in 1719 when a Cree native named Wa-Pa-Su brought a sample to Hudsons Bay Company fur trader Henry Kelsey, who commented on it in his journals. Fur trader Peter Pond paddled down the Clearwater River to Athabasca in 1778, saw the deposits and wrote of “springs of bitumen that flow along the ground.” In 1787, fur trader and explorer Alexander MacKenzie on his way to the Arctic Ocean saw the Athabasca oil sands, and commented, “At about 24 miles from the fork (of the Athabasca and Clearwater Rivers) are some bituminous fountains into which a pole of 20 feet long may be inserted without the least resistance.”

Recommended For You  Arches National Park

Geology

The world’s largest oil sands are in Venezuela and Canada. The geology of the deposits in the two countries is generally rather similar. They are vast heavy oil, extra-heavy oil, and/or bitumen deposits with oil heavier than 20°API, found largely in unconsolidated sandstones with similar properties. “Unconsolidated” in this context means that the sands have high porosity, no significant cohesion, and a tensile strength close to zero. The sands are saturated with oil which has prevented them from consolidating into hard sandstone.

Major deposits

There are numerous deposits of oil sands in the world, but the biggest and most important are in Canada and Venezuela, with lesser deposits in Kazakhstan and Russia. The total volume of non-conventional oil in the oil sands of these countries exceeds the reserves of conventional oil in all other countries combined. Vast deposits of bitumen – over 350 billion cubic metres (2.2 trillion barrels) of oil in place – exist in the Canadian provinces of Alberta and Saskatchewan. If only 30% of this oil could be extracted, it could supply the entire needs of North America for over 100 years. These deposits represent plentiful oil, but not cheap oil. They require advanced technology to extract the oil and transport it to oil refineries.

Most of the Canadian oil sands are in three major deposits in northern Alberta. They are the Athabasca-Wabiskaw oil sands of north northeastern Alberta, the Cold Lake deposits of east northeastern Alberta, and the Peace River deposits of northwestern Alberta. Between them, they cover over 140,000 square kilometres (54,000 sq mi)—an area larger than England—and contain approximately 1.75 Tbbl (280×109 m3) of crude bitumen in them. About 10% of the oil in place, or 173 Gbbl (27.5×109 m3), is estimated by the government of Alberta to be recoverable at current prices, using current technology, which amounts to 97% of Canadian oil reserves and 75% of total North American petroleum reserves. Although the Athabasca deposit is the only one in the world which has areas shallow enough to mine from the surface, all three Alberta areas are suitable for production using in-situ methods, such as cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD).

Production

Bituminous sands are a major source of unconventional oil, although only Canada has a large-scale commercial oil sands industry. In 2006, bitumen production in Canada averaged 1.25 Mbbl/d (200,000 m3/d) through 81 oil sands projects. 44% of Canadian oil production in 2007 was from oil sands. This proportion is expected to increase in coming decades as bitumen production grows while conventional oil production declines, although due to the 2008 economic downturn work on new projects has been deferred. Petroleum is not produced from oil sands on a significant level in other countries.

Methods of extraction

Except for a fraction of the extra-heavy oil or bitumen which can be extracted by conventional oil well technology, oil sands must be produced by strip mining or the oil made to flow into wells using sophisticated in-situ techniques. These methods usually use more water and require larger amounts of energy than conventional oil extraction. While much of Canada’s oil sands are being produced using open-pit mining, approximately 90% of Canadian oil sands and all of Venezuela’s oil sands are too far below the surface to use surface mining.

Primary production

Conventional crude oil is normally extracted from the ground by drilling oil wells into a petroleum reservoir, allowing oil to flow into them under natural reservoir pressures, although artificial lift and techniques such as horizontal drilling, water flooding and gas injection are often required to maintain production. When primary production is used in the Venezuelan oil sands, where the extra-heavy oil is about 50 degrees Celsius, the typical oil recovery rates are about 8-12%. Canadian oil sands are much colder and more biodegraded, so bitumen recovery rates are usually only about 5-6%. Historically, primary recovery was used in the more fluid areas of Canadian oil sands. However, it recovered only a small fraction of the oil in place, so it not often used today.

Surface mining

The Athabasca oil sands are the only major oil sands deposits which are shallow enough to surface mine. In the Athabasca sands there are very large amounts of bitumen covered by little overburden, making surface mining the most efficient method of extracting it. The overburden consists of water-laden muskeg (peat bog) over top of clay and barren sand. The oil sands themselves are typically 40 to 60 metres (130 to 200 ft) thick deposits of crude bitumen embedded in unconsolidated sandstone, sitting on top of flat limestone rock. Since Great Canadian Oil Sands (now Suncor Energy) started operation of the first large-scale oil sands mine in 1967, bitumen has been extracted on a commercial scale and the volume has grown at a steady rate ever since.

Recommended For You  Japanese scientists land on newly formed volcanic island

A large number of oil sands mines are currently in operation and more are in the stages of approval or development. The Syncrude Canada mine was the second to open in 1978, Shell Canada opened its Muskeg River mine (Albian Sands) in 2003 and Canadian Natural Resources Ltd (CNRL) opened its Horizon Oil Sands project in 2009. Newer mines include Shell Canada’s Jackpine mine, Imperial Oil’s Kearl Oil Sands Project, the Synenco Energy (now owned by Total S.A.) Northern Lights mine, and Suncor’s Fort Hills mine.

Oil sands tailings ponds

Oil sands tailings ponds are engineered dam and dyke systems that contain salts, suspended solids and other dissolvable chemical compounds such as acids, benzene, hydrocarbons residual bitumen, fine silts (mature fine tails MFT), and water. Large volumes of tailings are a byproduct of surface mining of the oil sands and managing these tailings is one of the most difficult environmental challenges facing the oil sands industry. The Government of Alberta reported in 2013 that tailings ponds in the Alberta oil sands covered an area of about 77 square kilometres (30 sq mi). The Syncrude Tailings Dam or Mildred Lake Settling Basin (MLSB) is an embankment dam that is, by volume of construction material, the largest earth structure in the world in 2001.

Cold Heavy Oil Production with Sand (CHOPS)

Some years ago Canadian oil companies discovered that if they removed the sand filters from heavy oil wells and produced as much sand as possible with the oil, production rates improved significantly. This technique became known as Cold Heavy Oil Production with Sand (CHOPS). Further research disclosed that pumping out sand opened “wormholes” in the sand formation which allowed more oil to reach the wellbore. The advantage of this method is better production rates and recovery (around 10% versus 5-6% with sand filters in place) and the disadvantage that disposing of the produced sand is a problem. A novel way to do this was spreading it on rural roads, which rural governments liked because the oily sand reduced dust and the oil companies did their road maintenance for them. However, governments have become concerned about the large volume and composition of oil spread on roads. so in recent years disposing of oily sand in underground salt caverns has become more common.

Cyclic Steam Stimulation (CSS)

The use of steam injection to recover heavy oil has been in use in the oil fields of California since the 1950s. The cyclic steam stimulation (CSS) “huff-and-puff” method is now widely used in heavy oil production world-wide due to its quick early production rates; however recovery factors are relatively low (10-40% of oil in place) compared to SAGD (60-70% of OIP).

CSS has been in use by Imperial Oil at Cold Lake since 1985 and is also used by Canadian Natural Resources at Primrose and Wolf Lake and by Shell Canada at Peace River. In this method, the well is put through cycles of steam injection, soak, and oil production. First, steam is injected into a well at a temperature of 300 to 340 degrees Celsius for a period of weeks to months; then, the well is allowed to sit for days to weeks to allow heat to soak into the formation; and, later, the hot oil is pumped out of the well for a period of weeks or months. Once the production rate falls off, the well is put through another cycle of injection, soak and production. This process is repeated until the cost of injecting steam becomes higher than the money made from producing oil.

Steam Assisted Gravity Drainage (SAGD)

Steam assisted gravity drainage was developed in the 1980s by the Alberta Oil Sands Technology and Research Authority and fortuitously coincided with improvements in directional drilling technology that made it quick and inexpensive to do by the mid 1990s. In SAGD, two horizontal wells are drilled in the oil sands, one at the bottom of the formation and another about 5 metres above it. These wells are typically drilled in groups off central pads and can extend for miles in all directions. In each well pair, steam is injected into the upper well, the heat melts the bitumen, which allows it to flow into the lower well, where it is pumped to the surface.

SAGD has proved to be a major breakthrough in production technology since it is cheaper than CSS, allows very high oil production rates, and recovers up to 60% of the oil in place. Because of its economic feasibility and applicability to a vast area of oil sands, this method alone quadrupled North American oil reserves and allowed Canada to move to second place in world oil reserves after Saudi Arabia. Most major Canadian oil companies now have SAGD projects in production or under construction in Alberta’s oil sands areas and in Wyoming. Examples include Japan Canada Oil Sands Ltd’s (JACOS) project, Suncor’s Firebag project, Nexen’s Long Lake project, Suncor’s (formerly Petro-Canada’s) MacKay River project, Husky Energy’s Tucker Lake and Sunrise projects, Shell Canada’s Peace River project, Cenovus Energy’s Foster Creek and Christina Lake developments, ConocoPhillips’ Surmont project, Devon Canada’s Jackfish project, and Derek Oil & Gas’s LAK Ranch project. Alberta’s OSUM Corp has combined proven underground mining technology with SAGD to enable higher recovery rates by running wells underground from within the oil sands deposit, thus also reducing energy requirements compared to traditional SAGD. This particular technology application is in its testing phase.

Recommended For You  'Cascade of Events' Caused Sudden Explosion of Animal Life

Vapor Extraction (VAPEX)

Several methods use solvents, instead of steam, to separate bitumen from sand. Some solvent extraction methods may work better in in situ production and other in mining. Solvent can be beneficial if it produces more oil while requiring less energy to produce steam.

Vapor Extraction Process (VAPEX) is an in situ technology, similar to SAGD. Instead of steam, hydrocarbon solvents are injected into an upper well to dilute bitumen and enables the diluted bitumen to flow into a lower well. It has the advantage of much better energy efficiency over steam injection, and it does some partial upgrading of bitumen to oil right in the formation. The process has attracted attention from oil companies, who are experimenting with it.

The above methods are not mutually exclusive. It is becoming common for wells to be put through one CSS injection-soak-production cycle to condition the formation prior to going to SAGD production, and companies are experimenting with combining VAPEX with SAGD to improve recovery rates and lower energy costs.

Toe to Heel Air Injection (THAI)

This is a very new and experimental method that combines a vertical air injection well with a horizontal production well. The process ignites oil in the reservoir and creates a vertical wall of fire moving from the “toe” of the horizontal well toward the “heel”, which burns the heavier oil components and upgrades some of the heavy bitumen into lighter oil right in the formation. Historically fireflood projects have not worked out well because of difficulty in controlling the flame front and a propensity to set the producing wells on fire. However, some oil companies feel the THAI method will be more controllable and practical, and have the advantage of not requiring energy to create steam.

Advocates of this method of extraction state that it uses less freshwater, produces 50% less greenhouse gases, and has a smaller footprint than other production techniques.

Petrobank Energy and Resources has reported encouraging results from their test wells in Alberta, with production rates of up to 400 bbl/d (64 m3/d) per well, and the oil upgraded from 8 to 12 API degrees. The company hopes to get a further 7-degree upgrade from its CAPRI (controlled atmospheric pressure resin infusion) system, which pulls the oil through a catalyst lining the lower pipe.

After several years of production in situ, it has become clear that current THAI methods do not work as planned. Amid steady drops in production from their THAI wells at Kerrobert, Petrobank has written down the value of their THAI patents and the reserves at the facility to zero. They have plans to experiment with a new configuration they call “multi-THAI,” involving adding more air injection wells.

Combustion Overhead Gravity Drainage (COGD)

This is an experimental method that employs a number of vertical air injection wells above a horizontal production well located at the base of the bitumen pay zone. An initial Steam Cycle similar to CSS is used to prepare the bitumen for ignition and mobility. Following that cycle, air is injected into the vertical wells, igniting the upper bitumen and mobilizing (through heating) the lower bitumen to flow into the production well. It is expected that COGD will result in water savings of 80% compared to SAGD

Economics

The world’s largest deposits of bitumen are in Canada, although Venezuela’s deposits of extra-heavy crude oil are even bigger. Canada has vast energy resources of all types and its oil and natural gas resource base is large enough to meet Canadian needs for generations. Abundant hydroelectric resources account for the majority of Canada’s electricity production and very little electricity is produced from oil. Since Canada will have more than enough energy to meet its growing needs, the excess oil production from its oil sands will probably go to export. The major importing country will probably continue to be the United States, although there is increasing demand for oil, particularly heavy oil, from growing in Asian countries such as China and India.

Canada has abundant resources of bitumen and crude oil, with an estimated remaining ultimate potential of 54 billion cubic metres (340 billion barrels). Of this, oil sands bitumen accounts for 90 per cent. Alberta currently accounts for all of Canada’s bitumen resources. Resources become reserves only after it is proven that economic recovery can be achieved. At current prices using current technology, Canada has remaining oil reserves of 27 billion m3 (170 billion bbls), with 98 per cent of this attributed to oil sands bitumen. This puts its reserves in third place in the world behind Venezuela and Saudi Arabia.

Note: The above post is reprinted from materials provided by Wikipedia.